ANALISIS TIME SERIES UNTUK MERAMALKAN JUMLAH PENJUALAN PADA YAMAHA MATARAM SAKTI KEBUMEN DENGAN METODE TREN

Tutut Indriastuti

Program Studi D3 Akuntansi Sekolah Tinggi Ilmu Ekonomi Putra Bangsa Kebumen email: tututindriastuti@gmail.com

ABSTRACT

The general problem for motorcycle dealers is the intense competition as part of efforts to maximize the profit generated. Other problems will arise when the dealer has unstable sales and supply targets. Therefore, the management must plan and prepare motorcycle sales for the future. Should the dealer to forecast assistance the dealer in making decisions and take advantage of market opportunities in the future.

Analysis used in this research was time series analysis by using trend method of semi mean method, least squares method, quadratic method, and exponential method. The object of this research was Yamaha Mataram Sakti Kebumen dealer with data of motorcycle sales amount in 2017.

The results of the average semi-trend forecast in January and February of 2018 were 27 units and 27 units for cash sales, in addition to 62 units and 62 units for sales on credit. The forecast results of the least squares trend method forecast were 18 units and 18 units for cash sales, and as many as 73 units and 75 units for sales on credit. The results of the quadratic trend forecast method were 21 units and 23 units for cash sales, in addition to 48 units and 38 units for sales on credit. On the other hand, the results of the exponential method forecast were 17 units and 17 units for cash sales, and as many as 47 units and 45 units for sales on credit. The method that has the smallest error value was the method that has the best performance in forecasting. The smallest error forecasting value from cash sales using MAE was the least squares method, MSE was the quadratic method, and MAPE was the exponential method. On the other hand, the smallest error value of selling on credit used MAE were the semi-average method and the quadratic method. While the smallest error value of MSE and MAPE was the least squares method.

Keywords: Competition, dealer, forecasting, time series analysis.

Pendahuluan

1. Latar Belakang

Penyebab kemacetan di Indonesia adalah volume kendaraan yang semakin meningkat, seiring dengan kebutuhan masyarakat untuk beraktivitas sehari-hari. Salah satu alat transportasi yang menjadi pilihan yaitu sepeda motor. Di kabupaten Kebumen terdapat berbagai *dealer* resmi untuk sepeda motor. Salah satu *dealer* di Kebumen adalah Yamaha Mataram Sakti Kebumen. Menyediakan *sparepart* motor Yamaha dan melayani perawatan atau *service* berkala sepeda motor Yamaha. Selain itu juga, melakukan penjualan sepeda motor secara tunai dan kredit berada di Jalan Pahlawan No 142 Kebumen.

Yamaha Mataram Sakti Kebumen bergerak dibidang penjualan sepeda motor dan tiap bulannya mengalami fluktusi untuk jumlah penjualannya. Hal ini menyebabkan pengendalian persediaan sepeda motor yang tidak stabil. Disisi lain, dealer dihadapkan pada persoalan target penjualan yang harus terpenuhi dalam tiap periodenya. Selain itu, dengan adanya pesaingan yang ketat pada usaha yang sejenis, maka hal tersebut harus direspon dengan baik oleh Yamaha Mataram Sakti Kebumen. Adanya hal tersebut maka pihak manajemen harus merencanakan dan menyiapkan penjualan sepeda motor untuk masa yang akan datang. Salah satu cara yang dapat digunakan adalah dengan menggunakan metode peramalan. Metode peramalan yang paling dikembangkan saat ini adalah time series. Selain itu, untuk mengetahui metode dengan nilai kesalahan terkecil dalam peramalan dapat menggunakan metode Mean Absolute Error, Mean Square Error dan Mean Absolute Percentage Error.

2. Rumusan Masalah

- a. Berapakah hasil peramalan jumlah penjualan pada Yamaha Mataram Sakti Kebumen pada bulan Januari dan Februari 2018 dengan menggunakan metode tren?
- b. Metode peramalan penjualan manakah jika dihitung menggunakan *Mean Absolute Error*, *Mean Square Error*, dan *Mean Absolute Percentage Error* yang menggambarkan nilai kesalahan terkecil?

3. Tujuan Penelitian

- a. Untuk mengetahui seberapa besar hasil ramalan jumlah penjualan pada Yamaha Mataram Sakti Kebumen pada bulan Januari dan Februari 2018.
- b. Untuk mengetahui metode peramalan penjualan yang dipilih jika dihitung menggunakan *Mean Absolute Error*, *Mean Square Error*, dan *Mean Absolute Percentage Error* yang menggambarkan tingkat kesalahan terkecil dalam meramalkan jumlah penjualan pada Yamaha Mataram Sakti Kebumen.

4. Batasan Masalah

Agar pembahasan tidak menyimpang dengan judul yang telah ditentukan, maka penelitian ini dibatasi hanya dalam hal perhitungan menggunakan metode tren yang terdiri dari metode tren semi rata-rata, tren kuadrat terkecil, tren kuadratis, dan tren eksponensial untuk meramalkan jumlah penjualan secara tunai dan kredit pada Yamaha Mataram Sakti Kebumen di bulan Januari dan Februari 2018 dengan berdasarkan data bulan Januari sampai dengan Desember 2017.

II. Kajian Pustaka

2.1 Peramalan (*Forecasting*)

Peramalan adalah suatu alat bantu yang penting dalam perencanaan yang efektif dan efisien. Kegunaan peramalan dalam suatu penelitian adalah melakukan analisa terhadap situasi yang diteliti untuk memperkirakan situasi dan kondisi yang akan terjadi dari sesuatu yang diteliti di masa depan.

2.2 Analisis Deret Berkala (*Time Series Analysis*)

Analisis time series ialah sekumpulan data masa lalu yang dicatat secara terus-menerus sebagai sarana untuk menggambarkan perkembangan suatu kegiatan tertentu dan memungkinkan kita untuk mengetahui perkembangan suatu atau beberapa kejadian serta hubungan atau pengaruhnya terhadap kejadian lainnya, dan seberapa besar pengaruh yang ditimbulkan dari perubahan tersebut dan dapat sebagai pandangan untuk pengambilan keputusan. *Time series* menunjukkan aktivitas yang merupakan hasil dari interaksi beberapa bentuk dari beberapa faktor-faktor yang mempengaruhinya. Menurut Sudjana dalam Supangat

(2008:167), data deret waktu tidak hanya dipengaruhi oleh sebuah faktor saja, melainkan berbagai faktor penentu, misalnya: bencana alam, manusia, selera konsumen, keadaan musim, kebiasaan, dan lainnya.

2.2 Manfaat Analisis Time Series

Menurut Atmaja (2009:29), *Time series* dianalisis untuk mendapatkan pengukuran-pengukuran yang dapat digunakan untuk membuat keputusan, memprediksi, dan merencanakan operasi di waktu mendatang.

2.3 Komponen Deret Berkala

Seperti yang di ungkapkan oleh Atmaja (2009:29), berdasarkan konsep atau model klasik, suatu *time series* memiliki empat komponen, yaitu Tren (T), Variasi Musim (V), Variasi Siklis (S) dan *Irregular* atau Random (R). Sebuah *time series* mungkin mengandung semua komponen atau hanya sebagian komponen tersebut.

2.4 Analisis Tren

Menurut Suharyadi dan Purwanto (2007: 176), Tren adalah suatu gerakan kecenderungan naik atau turun dalam jangka panjang yang diperoleh dari rata-rata perubahan dari waktu ke waktu dan nilainya cukup rata atau mulus (*smooth*). Terdapat dua jenis tren, yaitu tren positif dan tren negatif. Tren suatu data bisa dilihat dengan beberapa cara:

- 1. Menggambar dengan tangan
- 2. Menggunakan model matematis

2.6 Metode Analisis Tren

Menurut Suharyadi dan Purwanto (2007:178-180), untuk melakukan peramalan dengan analisis tren terdapat beberapa cara yaitu:

2.6.1 Metode Semi Rata-rata (Semi Average Method)

Menentukan tren menggunakan metode semi rata-rata sedikit lebih kompleks dari pada menggunakan metode bebas. Selain kompleksitas, metode ini memberikan obyektif garis tren. Metode setengah rata-rata pada prinsipnya adalah membagi data dalam dua bagian yaitu kelompok pertama dan kelompok kedua. Selanjutnya dua kelompok tersebut dipergunakan sebagai dasar untuk perhitungan tren dan *forecasting*.

2.6.2 Metode Kuadrat Terkecil (*Least Square Method*)

Tren dengan metode kuadrat terkecil diperoleh dengan menentukan garis tren yang mempunyai jumlah terkecil dari kuadrat selisih data asli dengan data pada garis tren. Metode kuadrat terkecil ini yang paling banyak digunakan dalam analisis deret berskala untuk peramalan bisnis. Metode ini pengembangan dari metode setengah rata-rata, perbedaannya ada pada nilai skala waktu (X) yang mengharuskan jumlah nilai skala waktu semua data adalah nol, dimana data tidak dikelompokkan menjadi dua bagian. Sehingga perhitungan nilai a dan b juga berbeda.

2.6.3 Metode Tren Kuadratis (Quadratic Trend Method)

Salah satu metode yang tidak linier adalah metode kuadratis. Jika penggambaran diagram pencar tidak menunjukkan kecendrungan (tren) secara linear, model tren nonlinear dapat digunakan untuk mendekati fungsi persamaan garis kecenderungan tersebut. Jika kurvanya berbentuk parabola, maka tren kuadratik dapat digunakan. Tren kuadratik adalah tren yang nilai variabel tak bebasnya naik atau turun tidak secara linear atau terjadi parabola bila datanya dibuat diagram pencarnya.

2.6.4 Metode Tren Eksponensial (Exponential Trend Method)

Tren eksponensial adalah salah satu tren yang mempunyai pangkat atau eksponen dari waktunya. Data Y dibuat nilai Ln.

2.7 Ukuran Kebaikan Model

Ada beberapa perhitungan yang biasa digunakan untuk menghitung kesalahan peramalan total. Perhitungan ini dapat digunakan untuk membandingkan model peramalan yang berbeda, mengawasi peramalan, dan untuk memastikan peramalan berjalan dengan baik. Ukuran kesalahan yang digunakan pada penelitian ini, diantaranya adalah:

2.7.1 *Mean Absolute Error (MAE)*

Mean Absolute Error atau nilai tengah kesalahan absolut adalah rata-rata mutlak dari kesalahan meramal tanpa menghiraukan tanda positif atau negatif.

2.7.2 Mean Squared Error (MSE)

Merupakan cara kedua untuk mengukur kesalahan peramalan keseluruhan. *Mean Squared Error* (MSE) merupakan rataan selisih kuadrat antara nilai yang diramalkan dan yang diamati. MSE memperkuat pengaruh angka-angka kesalahan besar, tetapi memperkecil angka kesalahan peramalan yang lebih kecil dari satu unit.

2.7.3 Mean Absolute Percentage Error (MAPE)

Presentase kesalahan absolut rata-rata atau MAPE memberikan petunjuk seberapa besar kesalahan peramalan dibandingkan dengan nilai sebenarnya. MAPE lebih banyak digunakan untuk perbandingan pada data-data yang mempunyai skala interval waktu berbeda. Misalnya membandingkan ketepatan ramalan suatu metode pada data penjualan, dimana data diamati harian, dan data yang diamati bulanan.

III. Metodologi Penelitian

1. Objek Penelitian

Penelitian ini mengacu pada peramalan jumlah penjualan sepeda motor pada bulan Januari dan Februari 2018. Data yang diambil adalah data jumlah penjualan sepeda motor pada bulan Januari sampai dengan Desember 2017 dari *dealer* resmi Yamaha Mataram Sakti Kebumen yang terletak di Jalan Pahlawan No 124 Kebumen. Sampel produk yang diambil yaitu jenis *Matic*, *Sport Matic*, dan *Moped* dan data digolongkan kedalam dua jenis penjualan yaitu penjualan secara tunai dan kredit.

- 2. Metode Pengambilan Data
 - a. Metode Dokumentasi
 - b. Metode Wawancara
 - c. Studi Kepustakaan
- 3. Sumber Data
 - a. Data Primer
 - b. Data Sekunder

4. Metode Analisis Data

Penelitian ini akan digunakan metode tren yang terdiri dari empat metode untuk meramalkan jumlah penjualan sepeda motor di Yamaha Mataram Sakti Kebumen yang bersifat kuantitatif. Menurut Suharyadi dan Purwanto (2007:178), peramalan jumlah penjualan sepeda motor di Yamaha Mataram Sakti Kebumen ini menitikberatkan pada perhitungan-perhitungan menggunakan metode sebagai berikut:

a. Metode Semi Rata-rata (Semi Average Method)

Rumus:

$$Y' = a + bX$$

Untuk nilai b:

$$b = \frac{(\overline{X} \text{ Kelompok II-Kelompok I})}{n}$$

Keterangan:

Y': Nilai peramalan

a : Nilai rata-rata kelompok 1

n : Jumlah data per kelompok (tahun dasar 2 dikurangi tahun dasar 1)

X: Jumlah tahun dihitung dari tahun dasar

b. Metode Kuadrat Terkecil (Least Square Method)

Rumus:

$$Y' = a + bX$$

Dimana:

$$a = Y/n$$

$$b = XY / X^2$$

Keterangan:

Y': Nilai ramalan

a : Nilai konstanta

b : Nilai kemiringan

X : Nilai periode tahun

- n: Banyaknya data
- c. Metode Tren Kuadratis (Quadratic Trend Method)

Rumus:

$$Y' = a + bX + cX^2$$

Dimana:

$$a = \frac{(\sum Y)(\sum X^4) - (\sum X^2 Y)(\sum X^2)}{n(\sum X^4) - (\sum X^2)^2}$$

$$b = \frac{\sum XY}{\sum X^2}$$

$$c = \frac{n(\Sigma X^2 Y) - (\Sigma X^2)(\Sigma Y)}{n(\Sigma X^4) - (\Sigma X^2)^2}$$

d. Metode Tren Eksponensial (Exponential Trend Method)

Rumus:

$$Y' = a \left(1 + b\right)^{x}$$

Dimana:

$$a = anti Ln (Ln Y)/n$$

$$b = anti Ln \frac{\sum (X.Ln Y)}{\sum X^2} - 1$$

Penelitian ini juga akan mengukur ketepatan metode ramalan tersebut untuk memilih metode yang kinerjanya paling baik dengan menggunakan beberapa metode (Suharyadi dan Purwanto,2007:180) (Manurung,2015:21-24):

e. Mean Absolute Erorr (MAE)

Rumus:

$$MAE = \frac{\sum |(Y - Y)|}{n}$$

Keterangan:

MAE: rata-rata absolut kesalahan

Y : nilai sebenarnya

Y': nilai ramalan

n : banyaknya data

f. Mean Squred Erorr (MSE)

Rumus:

$$MSE = \frac{\sum (Y-Yt)^2}{n}$$

Keterangan:

MSE: rata-rata kesalahan

Y: nilai sebenarnya

Y': nilai ramalan

n : banyaknya data

g. Mean Absolute Percentage Error (MAPE)

Rumus:

$$MAPE = \frac{\sum |(Y-Yt)/Y|}{n}$$

Keterangan:

Y: nilai sebenarnya

Y': nilai ramalan

n: banyaknya data

IV. Hasil dan Pembahasan

Yamaha Mataram Sakti Kebumen adalah *dealer* dan bengkel resmi motor Yamaha di Kebumen yang telah berdiri sejak tahun 2002. Letaknya di Jalan Palawan Kebumen samping SMP 5 Kebumen. Yamaha Mataram Sakti Kebumen menyediakan *sparepart* motor Yamaha dan melayani perawatan atau *service* berkala sepeda motor. *Dealer* tersebut dibangun diatas tanah berukuran 30m x 40 m yang terdiri dari dua lantai. Perluasan usaha dilakukan oleh Yamaha Mataram Sakti Kebumen dengan membuka cabang di Prembun yang terletak di Jalan Raya

Prembun, Kabekelan Prembun Kabupaten Kebumen yang dibangun sejak tahun 2007 dan secara langsung dibawahi oleh Yamaha Mataram Sakti Kebumen.

Tabel IV.1 Penjualan Sepeda Motor Januari-Desember 2017

Bulan	Tunai	Kredit	Penjualan
Januari 2017	43	42	85
Februari 2017	12	38	50
Maret 2017	19	58	77
April 2017	14	49	63
Mei 2017	17	70	87
Juni 2017	13	117	130
Juli 2017	50	62	112
Agustus 2017	30	60	90
September 2017	14	64	78
Oktober 2017	14	58	72
Nopember 2017	12	65	77
Desember 2017	26	66	92

Sumber: dealer Sepeda Motor Yamaha Mataram Sakti Kebumen

4.1 Perhitungan Peramalan

1. Metode Semi Rata-rata

a. Metode Semi Rata-rata Penjualan secara Tunai

Persamaan :
$$Y' = a + bX$$

$$b = \frac{(\overline{X} \text{ Kelompok II- } \overline{X} \text{ Kelompok I})}{n} = \frac{24,333-19,667}{12} = 0,389$$

Persamaan untuk bulan dasar Kelompok I sebagai berikut:

$$Y' = 19,667 + 0,389X$$

$$Y(Januari) = 19,667 + 0,389 (19) = 27,058$$

$$Y(Februari) = 19,667 + 0,389 (21) = 27,836$$

Persamaan untuk bulan dasar Kelompok II sebagai berikut:

$$Y' = 24,333 + 0,389 X$$

$$Y(Januari) = 24,333 + 0,389 (7) = 27,056$$

$$Y(Februari) = 24,333 + 0,389 (9) = 27,834$$

b. Metode Semi Rata-rata Penjualan secara Kredit

Persamaan : Y' = a + bX

$$b = \frac{(\overline{X} \text{ Kelompok II-} \overline{X} \text{ Kelompok I})}{n} = \frac{62,5-62,333}{12} = 0,014$$

Persamaan untuk bulan dasar Kelompok I sebagai berikut:

$$Y' = 62,333 + 0,014X$$

$$Y(Januari) = 62,333 + 0,014 (19) = 62,599$$

$$Y(Februari) = 62,333 + 0,014(21) = 62,627$$

Persamaan untuk bulan dasar Kelompok II sebagai berikut:

$$Y' = 62.5 + 0.014X$$

$$Y(Januari) = 62,5 + 0,014 (7) = 62,598$$

$$Y(Februari) = 62.5 + 0.014(9) = 62.626$$

- 2. Metode Kuadrat Terkecil
 - a. Metode Kuadrat Terkecil Penjualan secara Tunai

Persamaan : Y' = a + bX

$$a = \frac{Y}{n} = \frac{264}{12} = 22$$

$$b = \frac{X}{X^2} = \frac{-146}{572} = -0.255$$

Persamaan untuk metode kuadrat terkecil sebagai berikut:

$$Y' = 22 - 0.255X$$

$$Y(Januari) = 22 - 0.255 (13) = 18,685$$

$$Y(Februari) = 22 - 0.255 (15) = 18,175$$

b. Metode Kuadrat Terkecil Penjualan secara Kredit

Persamaan : Y' = a + bX

$$a = \frac{Y}{n} = \frac{749}{12} = 62,417$$

$$b = \frac{X}{X^2} = \frac{497}{572} = 0,869$$

Persamaan untuk metode kuadrat terkecil sebagai berikut:

$$Y' = 62,417 + 0,869X$$

$$Y(Januari) = 62.417 + 0.869 (13) = 73.714$$

$$Y(Februari) = 62,417 + 0,869 (15) = 75,452$$

3. Metode Kuadratis

a. Metode Kuadratis Penjualan secara Tunai

Persamaan :
$$Y' = a + bX + cX^2$$

$$a = \frac{(Y)(X^4) - (X^2Y)(X^2)}{n(X^4) - (X^2)^2} = \frac{(264)(48.620) - (13.096)(572)}{12(48.620) - (572)^2} = 20,857$$

$$b = \frac{XY}{X^2} = \frac{-146}{572} = -0.255$$

$$c = \frac{n(X^2Y)-(X^2)(Y)}{n(X^4)-(X^2)^2} = \frac{12(13.096)-(572)(264)}{12(48.620)-(572)^2} = 0,024$$

Persamaan untuk metode kuadratis sebagai berikut:

$$Y' = 20,857 - 0,255X + 0,024X^2$$

Y(Januari) =
$$20,857 - 0,255(13) + 0,024(13)^2 = 21,598$$

Y(Februari) =
$$20,857 - 0,255(15) + 0,024(15)^2 = 23,007$$

b. Metode Kuadratis Penjualan secara Kredit

Persamaan :
$$Y' = a + bX + cX^2$$

$$a = \frac{(Y)(X^4) - (X^2Y)(X^2)}{n(X^4) - (X^2)^2} = \frac{(749)(48.620) - (31.269)(572)}{12(48.620) - (572)^2} = 72,313$$

$$b = \frac{XY}{X^2} = \frac{497}{572} = 0,869$$

$$c = \frac{n \left(X^2 Y \right) - \left(X^2 \right) (Y)}{n \left(X^4 \right) - \left(X^2 \right)^2} = \frac{12(31.269) - (572)(749)}{12(48.620) - (572)^2} = -0,208$$

Persamaan untuk metode kuadratis sebagai berikut:

Y' =
$$72,313 + 0,869X - 0,208X^2$$

Y(Januari) = $72,313 + 0,869(13) - 0,208(13)^2 = 48,458$
Y(Februari) = $72,313 + 0,869(15) - 0,208(15)^2 = 38,458$

- 4. Metode Eksponensial
 - a. Metode Eksponensial Penjualan secara Tunai

Persamaan: Y' = a
$$(1 + b)^x$$

a = anti Ln (Ln Y)/n
= anti Ln $(35,5621)/12 = 19,3658008$
b = anti Ln $\frac{(X.\text{Ln Y})}{X^2}$ -1
= anti Ln $\frac{-4,6208}{572}$ -1
= anti Ln -0,008 -1
= 0,99195425-1 = -0,008046

Persamaan untuk metode eksponensial sebagai berikut:

Y' = a
$$(1 + b)^x$$

Y(Januari) = 19,366 $(1 - 0,008)^{13}$ = 17,446
Y(Februari) = 19,366 $(1 - 0,008)^{15}$ = 17,168

b. Metode Eksponensial Penjualan secara Kredit

Persamaan: Y' = a
$$(1 + b)^x$$

a = anti Ln (Ln Y)/n
= anti Ln $(49,1430353)/12 = 60,05452761$
b = anti Ln $\frac{(X.\text{Ln Y})}{X^2} - 1$
= anti Ln $\frac{10,0409}{572} - 1$
= anti Ln $0,017553966 - 1$

$$=$$
 1,017708943-1 $=$ 0,017708943

Persamaan untuk metode eksponensial sebagai berikut:

$$Y' = a \left(1 + b\right)^x$$

Y(Januari) =
$$60,055 (1 - 0,018)^{13} = 47,424$$

Y(Februari) =
$$60,055 (1 - 0,018)^{15} = 45,732$$

4.2 Uji Kesalahan Peramalan

1. Metode Semi Rata-rata

a. Metode Semi Rata-rata Penjualan secara Tunai

Mean Absolute Error =
$$\frac{|(Y-Yt)|}{n} = \left|\frac{-0.02568}{12}\right| = 0.00214$$

Mean Square Error =
$$\frac{(Y-Yt)^2}{n} = \frac{2012,283721}{12} = 167,69031$$

Mean Absolute Percentage Error =
$$\frac{|(Y-Yt)/Y|}{n} = \left| \frac{-3,122242925}{12} \right| = 0,260187$$

b. Metode Semi Rata-rata Penjualan secara Kredit

Mean Absolute Error =
$$\frac{\left|\left(Y-Yt\right)\right|}{n} = \left|\frac{-0,004}{12}\right| = 0,000333$$

Mean Square Error =
$$\frac{(Y-Yt)^2}{n} = \frac{4283,11278}{12} = 356,92607$$

Mean Absolute Percentage Error =
$$\frac{|(Y-Yt)/Y|}{n} = \left| \frac{-0.905357502}{12} \right| = 0.075446$$

2. Metode Kuadrat Terkecil

a. Metode Kuadrat Terkecil Penjualan secara Tunai

Mean Absolute Error =
$$\frac{|(Y-Yt)|}{n} = \left|\frac{0}{12}\right| = 0$$

Mean Square Error =
$$\frac{(Y-Yt)^2}{n} = \frac{1774,7343}{12} = 147,894525$$

Mean Absolute Percentage Error =
$$\frac{|(Y-Yt)/Y|}{n} = \left| \frac{-3,014198239}{12} \right| = 0,2511832$$

b. Metode Kuadrat Terkecil Penjualan secara Kredit

Mean Absolute Error =
$$\frac{|(Y-Yt)|}{n} = \left|\frac{-0,004}{12}\right| = 0,0003333$$

Mean Square Error =
$$\frac{(Y-Yt)^2}{n} = \frac{3865,08276}{12} = 322,09023$$

Mean Absolute Percentage Error =
$$\frac{|(Y-Yt)/Y|}{n} = \left| \frac{-0.731955296}{12} \right| = 0.0609963$$

3. Metode Kuadratis

a. Metode Kuadratis Penjualan secara Tunai

Mean Absolute Error =
$$\frac{|(Y-Yt)|}{n} = \left|\frac{-0.012}{12}\right| = 0.001$$

Mean Square Error =
$$\frac{(Y-Yt)^2}{n} = \frac{1762,4586}{12} = 146,87155$$

Mean Absolute Percentage Error =
$$\frac{|(Y-Yt)/Y|}{n} = \left| \frac{-2,989018719}{12} \right| = 0,2490849$$

b. Metode Kuadratis Penjualan secara Kredit

Mean Absolute Error =
$$\frac{|(Y-Yt)|}{n} = \frac{|0,22|}{12} = 0,01833333$$

Mean Square Error =
$$\frac{(Y-Yt)^2}{n} = \frac{2944,70842}{12} = 245,392369$$

Mean Absolute Percentage Error =
$$\frac{|(Y-Yt)/Y|}{n} = \frac{|-0,49346932}{12} = 0,0411224$$

4. Metode Eksponensial

a. Metode Eksponensial Penjualan secara Tunai

Mean Absolute Error =
$$\frac{|(Y-Yt)|}{n} = \frac{|31,2505047|}{12} = 2,60420872$$

Mean Square Error =
$$\frac{(Y-Yt)^2}{n} = \frac{1861,114588}{12} = 155,092882$$

Mean Absolute Percentage Error =
$$\frac{|(Y-Yt)/Y|}{n} = \left| \frac{-1,247662365}{12} \right| = 0,1039719$$

b. Metode Eksponensial Penjualan secara Kredit

Mean Absolute Error =
$$\frac{|(Y-Yt)|}{n} = \left|\frac{22,6599564}{12}\right| = 1,8883297$$

Mean Square Error =
$$\frac{(Y-Yt)^2}{n} = \frac{6207,596517}{12} = 517,29971$$

Mean Absolute Percentage Error =
$$\frac{|(Y-Yt)/Y|}{n} = \left| \frac{-0.751251687}{12} \right| = 0.0626043$$

V. Penutup

1. Kesimpulan

a. Hasil peramalan jumlah penjualan sepeda motor pada Yamaha Mataram Sakti Kebumen untuk bulan Januari-Februari 2018

Tabel V.1 Hasil Ramalan Jumlah Penjualan Sepeda Motor Metode Tren

Jenis Metode	Januari 2018		Februari 2018	
	Tunai	Kredit	Tunai	Kredit
Semi Rata-rata	27 unit	62 unit	27 unit	62 unit
Kuadrat Terkecil	18 unit	73 unit	18 unit	75 unit
Kuadratis	21 unit	48 unit	23 unit	38 unit
Eksponensial	17 unit	47 unit	17 unit	45 unit

Berdasarkan perhitungan hasil ramalan penjualan sepeda motor secara tunai pada Yamaha Mataram Sakti Kebumen menggunakan metode semi rata-rata, metode kuadrat terkecil, dan metode eksponensial untuk bulan Januari dan Februari 2018 tidak mengalami perubahan yang signifikan dengan penjualan per unit sama di tiap bulannya. Disisi lain, untuk perhitungan menggunakan metode kuadratis mengalami peningkatan penjualan sebesar 2 unit dari bulan Januari ke Februari 2018

Hasil ramalan untuk penjualan secara kredit pada bulan Januari dan Februari 2018 dihitung menggunakan metode semi rata-rata tidak mengalami peningkatan penjualan. Perhitungan menggunakan metode kuadrat terkecil mengalami peningkatan sebesar 2 unit, namun untuk perhitungan menggunakan metode kuadratis dan metode eksponensial mengalami penurunan penjualan dari bulan Januari ke Februari 2018.

b. Hasil dari metode ukuran kebaikan ramalan

Tabel V.2 Hasil Ukuran Kebaikan Model Tren Model Tren MAE, MSE , dan MAPE secara Tunai

Jenis Metode	Metode Kesalahan Terkecil			
	MAE	MSE	MAPE	
Semi Rata-rata	0,00214	167,69031	0,260187	
Kuadrat Terkecil	0	147,894525	0,2511832.	
Kuadratis	0,001	146,87155	0,2490849	
Eksponensial	2,60420872	155,092882	0,1039719	

Tabel V.3 Hasil Ukuran Kebaikan Model Tren Model Tren MAE, MSE, dan MAPE secara Kredit

Jenis Metode	Metode Kesalahan Terkecil			
	MAE	MSE	MAPE	
Semi Rata-rata	0,000333	356,92607	0,075446	
Kuadrat Terkecil	0,01833333	245,392369	0,0411224	
Kuadratis	0,0003333	322,09023	0,0609963	
Eksponensial	1,8883297	517,29971	0,0626043	

Berdasarkan Tabel V.2 nilai kesalahan terkecil pada peramalan menggunakan MAE adalah metode kuadrat terkecil, sedangkan untuk MSE adalah metode kuadratis, dan untuk MAPE adalah metode eksponensial. Disisi lain, berdasarkan Tabel V.3 nilai MAE dengan hasil paling kecil adalah metode semi rata-rata dan kuadratis. Sedangkan untuk nilai MSE dan MAPE nilai kesalahan terkecil adalah metode kuadrat terkecil.

5.2 Saran

Berdasarkan analisis yang telah dilakukan peneliti, maka peneliti memberikan saran yang sekiranya dapat dijadikan bahan pertimbangan. Adapun saran yang dapat penulis berikan adalah sebagai berikut:

- 1. Sebaiknya bagi Yamaha Mataram Sakti Kebumen dalam menentukan target penjualan menerapkan perhitungan dengan metode peramalan penjualan.
- Pada penelitian selanjutnya mengenai peramalan penjualan sepeda motor pada Yamaha Mataram Sakti Kebumen sebaiknya menggunakan data *time* series dengan periode yang lebih panjang, agar hasil peramalan yang diperoleh dapat optimal.
- 3. Upaya mencapai peningkatan jumlah penjualan sepeda motor pada Yamaha Mataram Sakti Kebumen yang sesuai dengan hasil peramalan, maka pada marketing sebagai bagian yang mengatur penjualan agar sesuai target yang diinginkan dan seluruh elemen karyawan pada Yamaha Mataram Sakti Kebumen dapat mengoptimalkan penjualan sepeda motor secara kredit maupun tunai.

DAFTAR PUSTAKA

- Atmaja, L. Setia. 2009. *Statistika Untuk Bisnis dan Ekonomi Edisi Pertama*. CV. Andi Offset. Yogyakarta
- Manurung, B.U. Putra. 2015. Implementasi Least Square Dalam Untuk Prediksi Penjualan Sepeda Motor Studi Kasus PT Graha Auto Pratama. *Jurnal Riset Komputer (JURIKOM)* 2(6):21-24
- Suharyadi dan Purwanto S.K. 2007. Statistika: Untuk Ekonomi dan Keuangan Modern Edisi Dua. Salemba Empat. Jakarta
- Supangat, Andi. 2008. Statistika : Dalam Kajian Deskriptif, Inferensi, dan Nonparametrik Edisi Pertama Cetakan Kedua. Kencana Prenada Media Group. Jakarta

www.yamahamatsakti.com 21 Januari 2018 (20:24)